DISEASE DETECTION SYSTEM IN COFFEE PRUNS USING MOBILENET ALGORITHM
##plugins.themes.academic_pro.article.main##
Abstract
Coffee fruit is a crop that has a strategic role in the economy and is a source of livelihood for most farmers in various tropical regions. The disease detection system on coffee fruit using the MobileNet algorithm is a technology that combines artificial intelligence and image processing to identify infected diseases in coffee plants. In this study, researchers used the Cobb-Douglas method and regression conducted by researchers using E-Views software. The results showed that the MobileNet algorithm in detecting diseases in coffee is quite efficient in terms of computation and the size of the detection system model has achieved the best accuracy, namely with 92% training accuracy and 85% testing and validation accuracy.
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Munawaroh AZ, Alfarisi AI, Diani CM, Desinta R, Nurazizah S. Penyakit yang Menyerang Buah Kopi (Coffea spp) Disease Affecting Cherry Coffee (Coffea spp). InProsiding Seminar Nasional Biologi 2021 (Vol. 1, No. 2, pp. 1284-1291).
- Masykur F, Setyawan MB, Winangun K. Optimalisasi Epoch Pada Klasifikasi Citra Daun Tanaman Padi Menggunakan Convolutional Neural Network (CNN) MobileNe t Epoch Optimization on Rice Leaf Image Classification Using Convolutional Neural Network (CNN) MobileNet. no. no. July. 2022:581-90.
- Shiddiq AK, Syahputra TD. Deteksi Penyakit pada Tanaman Padi Menggunakan MobileNet Transfer Learning Berbasis Android. AGENTS: Journal of Artificial Intelligence and Data Science. 2022 Aug 29;2(2):1-8.
- Saputra RA, Wasiyanti S, Supriyatna A, Saefudin DF. Penerapan Algoritma Convolutional Neural Network Dan Arsitektur MobileNet Pada Aplikasi Deteksi Penyakit Daun Padi. Jurnal Swabumi. 2021 Sep 15;9(2):184-8.
- Purnama IN. Herbal Plant Detection Based on Leaves Image Using Convolutional Neural Network With Mobile Net Architecture. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer). 2020 Jul 9;6(1):27-32.